COMPONENTS: ORIGINAL MEASUREMENTS: 1. Ammonium sulfite; (NH₄)₂SO₃; [10196-18-5] Yasuda, M. Bull. Inst. Phys. Chem. Research (Tokyo) 1924, 3, 43-50. 2. Water; H₂O; [7732-18-5] VARIABLES: PREPARED BY: Mary R. Masson Temperature: 285 - 333 K

EXPERIMENTAL VALUES:

Composition of equilibrium solutions

t/°C	$^{\rm SO}_2$ $_{\rm mo1~dm}^{-3}$	NH ₃ mo1 dm ⁻ 3	$(NH_4)_2SO_3$ g dm $^-3$	Solıd ^a phase
12	3,463	6.899	403.2	В
15	3.675	7.450	426.5	В
20	3.874	7.728	451.5	В
25	4.060	8.092	470.96	Α
30	4.189	8.406	485.9	A
40	4.328	8.859	502.4	A
50	4.919	9.641	570.6	Α
60	54.64	10.81	633.7	Α

^a Solid phases: $A - 2(NH_4)_2SO_3.3H_2O$, $B - (NH_4)_2SO_3.H_2O$

AUXIL	IARY INFORMATION
METHOD APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Equilibrium solutions were analysed by "standard methods" (1).	Not stated.
	ESTIMATED ERROR:
	No estimates possible. REFERENCES:
	1. Treadwell, Analytical Chemistry, 5th Ed., Vol. II, 560, 692.

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Ammonium sulfite; (NH₄)₂SO₃; [10196-04-0] Water; H₂O; [7732-18-5] 	Ishikawa, F.; Murooka, T. Bull. Inst. Phys. Chem. Research (Tokyo) 1928, 7, 1160-76. (In Japanese); Sci. Repts. Tohoku Imp. University 1933, 22, 201-219. (In English).
VARIABLES:	PREPARED BY:
Temperature: 260 - 373 K	Mary R. Masson

EXPERIM	ENTAL VALU				
	Time	$(NH_4)_2SO_3$	$(NH_4)_2SO_3$	(NH4)2SO3	$(NH_4)_2SO_3^a$
t/°C	hr	mass %	mean mass %	g/100 ml solm.	mol/kg
0	4.5 5 27 53	32.52 32.29 32.46 32.31	32.40	38.21	4.127
5	4.5 4.5 28	33.75 33.75 33.79 33.87 33.89	33.81	40.05	4.398
10	5 30	35.05 35.05	35.05	41.69	4.647
15	4.5 5.5 28 51	36.39 36.40 36.40 36.41	36.40	43.47	4.928
20	5 24	37.78 37.82	37.80	45.34	5.233
25	24 24	39.30 39.28	39.29	47.31	5.572
30	5 16 18	40.75 40.82 40.73	40.77	49.32	5.927
			(6	continued on next pa	ge)

AUXILIARY INFORMATION

METHOD APPARATUS/PROCEDURE:

A simple saturation technique was used. An atmosphere of ammonia-satd. nitrogen was used, in an open vessel for temperatures up to 80°C, and in a closed vessel at the higher temps. Solution samples were removed through a filtering tube containing cotton wool into a pipette with stopcocks at both ends. The solution removed was weighed and analysed.

Sulfur dioxide was determined by reaction of the sample with excess of acidified iodine solution, followed by backturation with thiosulfate. Ammonia was determined after addition of sodium hydroxide, collection of the evolved ammonia in standard sulfuric acid solution, and titration of the excess of acid with standard sodium hydroxide to a sodium alizarin sulfonate end-point.

The solubility was calculated from the mean of the values corresponding to these two analyses.

SOURCE AND PURITY OF MATERIALS:

Sulfur dioxide gas from a cylinder was passed into an ammonia solution under an atmosphere of hydrogen, until only a little free ammonia remained. The small crystals obtained were redissolved in the solution by heating, then the solution was cooled very slowly to allow large crystals to separate. These were filtered off under N₂ and kept in a special desiccator.

ESTIMATED ERROR:

Temperature: ± 0.02 °C (up to 80°C) ± 0.05 °C (above 80°C)

Analyses: r.s.d. generally < 0.2%.

REFERENCES:

COMPONENTS:

1. Ammonium sulfite; $(NH_4)_2SO_3$; [10196-04-0]

2. Water; H₂O; [7732-18-5]

ORIGINAL MEASUREMENTS:

Ishikawa, F.; Murooka, T.

Bull. Inst. Phys. Chem. Research (Tokyo) 1928, 7, 1160-76. (In Japanese); Sci. Repts. Tohoku Imp. University 1933, 22, 201-219. (In English).

EXPERIME	ENTAL VALU	ES (continued):				
	Time	$(NH_4)_2SO_3$	(NH ₄) ₂ SO ₃	(NH4)2SO3	(NH ₄) ₂ SO ₃ ^a	
t/°C	hr	mass %	mean mass %	g/100 ml soln.	mol/kg	
35	5 24 24	42.35 42.31 42.31	42.32	51.44	6.317	
40	5 29 29	43.93 43.98 43.96	43.96	53.64	6.754	
50	2 4	47.27 47.25	47.26	58.16	7.716	
60	2 4.5	50.90 50.97	50.94	63.31	8.940	
70	2.5 3 4.5	54.72 54.70 54.72	54.71	68.70	10.401	
75	2 4.5	56.51 56.54	56.52	71.38	11.193	
80	1.5 1.5	58.88 58.90	58.89	74.88	12.334	
85 ^b	1 2 2.5	59.42 59.50 59.68	59.53		12.665	
90 ^b	1.5 3.5	60.10 59.90	60.00		12.915	
95 ^b	1 1.5	60.27 60.34	60.30		13.078	
100 ^b	1 1.5 1.5	60.63 60.26 60.44	60.44		13.155	
- 6.55	2 2	30.69 30.55	30.62		3.800	
-11.52	2 3	29.14 29.19	29.16		3.544	
-12.96		28.87 28.84	28.85		3.491	
- 1.73 ^c - 1.82 ^c - 3.35 ^c - 4.61 ^c - 6.27 ^c - 7.97 ^c - 9.69 ^c -12.74 ^c -12.96		4.961 5.162 9.698 13.044 16.817 20.505 23.652 28.418 28.855			0.449 0.469 0.925 1.292 1.741 2.221 2.667 3.418 3.492	

 $^{^{\}mathrm{a}}$ Molalities calculated by the compiler.

The transition temperature between the monohydrate and the anhydrous salt was found to be $80.8^{\pm}~0.2^{\circ}\text{C}$.

 $^{^{\}rm b}$ Solid phases: (NH₄)₂SO₃, $^{\rm c}$ solid phase ice, otherwise (NH₄)₂SO₃.H₂O.

Ammonium Sulfite 120 COMPONENTS: ORIGINAL MEASUREMENTS: 1. Ammonium sulfite; (NH₄)₂SO₃; Vasilenko, N.A. [10196-04-0] Zh. Priklad. Khim. 1950, 23, 472-81. 2. Water; H₂O; [7732-18-5] VARIABLES: PREPARED BY: Temperature: 261 - 303 K Mary R. Masson EXPERIMENTAL VALUES: Composition of equilibrium solutions $(NH_4)_2SO_3^a$ Solid^b (NH₄)₂SO₃t/°C mass % mol/kg phase -12.0 26.9 3,168 Α -10.6 24.7 2.824 22.4 Α -9.22.485 - 7.8 20.0 2.153 1.801 A - 6.6 17.3 1.448 A - 5.3 14.4 1.097 - 4.0 11.3 A 7.9 - 2.8 - 1.5 0.739 Α 4.1 0.368 В - 5.2 30.7 3.814 4,146 В 32.5 + 1.2 7.2 4.455 В 34.1 В 34.7 4.575 9.0 35.9 4.822 В 13.2 В 19.1 37.7 5.211 39.3 5.575 25.2 В 30.3 40.8 5.934 a Molalities calculated by the compiler. Solid phases: A - ice, B - $(NH_4)_2SO_3.H_2O$

AUXILIARY INFORMATION

METHOD APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A simple saturation procedure.	
	ESTIMATED ERROR:
	No estimates possible.
	No estimates possible.
	DI EL DENCI C
	REFERENCES: